
Using Network Security Management to solve
Boolean Satisfiability Problem

Mekala Bhaskar, G.VishnuMurthy, V.Amarnath

Department of CSE, Anurag Group of Institutions,
CVSR College of Engineering, jodimetla, Ghatakesar, Hyderabad, AP, India

ABSTRACT- Enterprise network security management is a
complex task of balancing security and usability, with trade-offs
often necessary between the two. Past work has provided ways to
identify intricate attack paths due to misconfiguration and
vulnerabilities in an enterprise system, but little has been done to
address how to correct the security problems within the context of
various other requirements such as usability, ease of access, and
cost of countermeasures. This paper presents an approach based
on Boolean Satisfiability Solving (SAT Solving) that can reason
about attacks, usability requirements, cost of actions, etc. in a
unified, logical framework. Preliminary results show that the
approach is both effective and efficient.
General Terms
Boolean Satisfiability Problem (SAT), Computer Network
Management, Computer Network Security, Risk Analysis,
Security, Scalability

1. INTRODUCTION
In computer science, satisfiability (often written in all capitals
or abbreviated SAT) is the problem of determining if the
variables of a given Boolean formula can be assigned in such a
way as to make the formula evaluate to TRUE. Equally
important is to determine whether no such assignments exist,
which would imply that the function expressed by the formula
is identically FALSE for all possible variable assignments. In
this latter case, we would say that the function is unsatisfiable;
otherwise it is satisfiable. For example, the formula a AND b is
satisfiable because one can find the values a = TRUE and
b = TRUE, which make a AND b TRUE. To emphasize the
binary nature of this problem, it is frequently referred to as
Boolean or propositional satisfiability.SAT was the first known
example of an NP-complete problem. That briefly means that
there is no known algorithm that efficiently solves all instances
of SAT, and it is generally believed (but not proven, see P
versus NP problem) that no such algorithm can exist. Further, a
wide range of other naturally occurring decision and
optimization problems can be transformed into instances of
SAT. A class of algorithms called SAT solvers can efficiently
solve a large enough subset of SAT instances to be useful in
various practical areas such as circuit design and automatic
theorem proving, by solving SAT instances made by
transforming problems that arise in those areas. Extending the
capabilities of SAT solving algorithms is an ongoing area of
progress. However, no current such methods can efficiently
solve all SAT instances.
To make things more complicated, requirements for usability
are often at odds with those for security. Configuration
management would be a trivial problem if one only needed to

consider security requirements; simply shutting down the
whole network would resolve any security issues. But
configuration changes aimed at correcting security flaws must
be made in a context-aware manner, carefully balancing the
system’s security and usability. Existing works in enterprise
network security analysis, such as MulVAL [19], [20], can
identify all possible attack paths in an enterprise system and
output them in a graph structure. This structure provides a good
foundation for addressing how to automatically find the best
way to correct the security problems presented in the analysis
results. We have developed a systematic approach, shown in
Figure1, to aid a human in confronting these difficulties. The
current (problematic) network configuration settings are

Fig. SAT-based configuration generation

passed into the MulVAL toolkit, which produces a logical
proof graph identifying all potential attack paths by which an
attacker might exploit system resources. This proof graph is
converted into a Boolean formula in conjunctive normal form
that relates configuration settings and attacker actions with
potential effects, such as an attacker being able to execute
arbitrary code on a computer in the network. Security and
usability requirements, provided by the human user, are also
converted into conjunctive normal form and added to the
Boolean formula, and this combined formula φ is processed by
a SAT solver.
A human user can further train the SAT solver as to the relative
value of various system resources and usages.Working
interactively, the human user is able to quickly identify and
resolve network security issues without unknowingly lessening
the system usability. As the tool is trained, the degree of
automation should increase, producing sound and desirable
reconfiguration suggestions with minimal human involvement.
In this approach, we use two SAT solving techniques:

Mekala Bhaskar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3672-3677

3672

1) MinCostSAT can utilize user-provided discrete cost values,
associated with changing a given configuration setting or
allowing an attacker a given amount of access, to find a
mitigation solution that minimizes the cost in terms of both
security risk and usability impairment.
2) By examining the unSAT core, a minimal set of
configurations and policy requirements that conflict, wenarrow
the complexity of a reconfiguration dilemma to a
straightforward choice between options. Past policy decisions
by the human user are placed in a partialorderlattice and used
to further reduce the scope of the decisions presented to the
user.
By this approach, the human user is not expected to fully
comprehend the effects, both good and bad, of all aspects of
network configuration, but only to make decisions on the

Fig. 2. A MulVAL proof graph

Immediate relative value of specific instances of usability and
security. In this way, we reduce an extremely complex problem
to one of more manageable proportions, automating the
verification of both security and usability policies while
introducing a method by which conflicts can be quickly and
verifiably resolved.

II. MULVAL SECURITY ANALYZER
We use the MulVAL tool suite [19], [20] for our
work.MulVAL is a security analyzation tool that, given initial
network configurations (machines, active services, inter-host
reach ability, etc.) and a database of known vulnerabilities, can
identify all potential attack paths by which an attacker can
exploit the system. These attack paths are assembled in a
logical proof graph, showing how potentially successful attacks
into the network are enabled by initial attacks on the outer
edges. MulVAL’s reasoning engine is specified declaratively in
Datalog [1], providing inherent soundness of the results as well
as an efficient O(N2) running time [19].

 Figure 2 shows part of the proof graph for an example
enterprise network we studied. The diamond-shaped nodes in
the graph represent privileges an attacker can gain through the
exploits depicted as the elliptical nodes. System configuration
data are represented by the rectangular nodes, such as c1, c2,
c3, c4, c5. These can be both administrator defined
configuration settings, like host access permissions, and
unintentional facts, such as an existing vulnerability in a
specific application. The potential exploits - e1, e2, e3 - link the
causality relationship between a privilege that an attacker can
gain and the preconditions that make this possible. For
example, node e1 could correspond to a remote buffer overflow
attack on a service. It links the effect of the attack, p1 (which
means the attacker can gain privilege on the victim machine),
to pre-conditions for the attack, such as c1 (which could mean
the existence of a buffer-overflow vulnerability in
the service program), and p2 (which could mean the attacker’s
ability to send a maliciously crafted packet to the vulnerable
service). All the arcs coming out of an exploit node like e1
form a logical AND relation, requiring all of its children to be
true before this exploit can be used. The arcs coming out of a
privilege node like p1 form a logical OR relation, in which
multiple descendant nodes indicate alternative exploits by
which an attacker can gain this privilege.
Although we have chosen to build our implementation based
on the MulVAL proof graph, our approach can be based easily
on other, similar tools for the production of network attack
graphs (or fault propagation models) [6], [7], [11].
1.1.1 2-satisfiability
Main article: 2-satisfiability
SAT is also easier if the number of literals in a clause is limited
to 2, in which case the problem is called 2SAT. This problem
can also be solved in polynomial time, and in fact is complete
for the class NL. Similarly, if we limit the number of literals
per clause to 2 and change the AND operations to XOR
operations, the result is exclusive-or 2-satisfiability, a problem
complete for SL = L.
One of the most important restrictions of SAT is HORNSAT,
where the formula is a conjunction of Horn clauses. This
problem is solved by the polynomial-time Horn-satisfiability
algorithm, and is in fact P-complete. It can be seen as P's
version of the Boolean satisfiability problem.
Provided that the complexity classes P and NP are not equal,
none of these restrictions are NP-complete, unlike SAT. The
assumption that P and NP are not equal is currently not proven.
1.1.2 [Edit] 3-satisfiability
3-satisfiability is a special case of k-satisfiability (k-SAT) or
simply satisfiability (SAT), when each clause contains exactly
k = 3 literals. It was one of Karp's 21 NP-complete problems.
Here is an example, where ¬ indicates negation:

E has two clauses (denoted by parentheses), four variables (x1,
x2, x3, x4), and k=3 (three literals per clause).
To solve this instance of the decision problem we must
determine whether there is a truth value (TRUE or FALSE) we
can assign to each of the variables (x1 through x4) such that the
entire expression is TRUE. In this instance, there is such an

Mekala Bhaskar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3672-3677

3673

assignment (x1 = TRUE, x2 = TRUE, x3=TRUE, x4=TRUE), so
the answer to this instance is YES. This is one of many
possible assignments, with for instance, any set of assignments
including x1 = TRUE being sufficient. If there were no such
assignment(s), the answer would be NO.
3-SAT is NP-complete and it is used as a starting point for
proving that other problems are also NP-hard. This is done by
polynomial-time reduction from 3-SAT to the other problem.
An example of a problem where this method has been used is
the Clique problem. 3-SAT can be further restricted to One-in-
three 3SAT, where we ask if exactly one of the literals in each
clause is true, rather than at least one. This restriction remains
NP-complete.
1.1.3 There is a simple randomized algorithm due to Schöni 2-
satisfiability
Main article: 2-satisfiability
SAT is also easier if the number of literals in a clause is limited
to 2, in which case the problem is called 2SAT. This problem
can also be solved in polynomial time, and in fact is complete
for the class NL. Similarly, if we limit the number of literals
per clause to 2 and change the AND operations to XOR
operations, the result is exclusive-or 2-satisfiability, a problem
complete for SL = L.
One of the most important restrictions of SAT is HORNSAT,
where the formula is a conjunction of Horn clauses. This
problem is solved by the polynomial-time Horn-satisfiability
algorithm, and is in fact P-complete. It can be seen as P's
version of the Boolean satisfiability problem.
Provided that the complexity classes P and NP are not equal,
none of these restrictions are NP-complete, unlike SAT. The
assumption that P and NP are not equal is currently not proven.
1.1.4 [edit] 3-satisfiability
3-satisfiability is a special case of k-satisfiability (k-SAT) or
simply satisfiability (SAT), when each clause contains exactly
k = 3 literals. It was one of Karp's 21 NP-complete problems.
Here is an example, where ¬ indicates negation:

E has two clauses (denoted by parentheses), four variables (x1,
x2, x3, x4), and k=3 (three literals per clause).
To solve this instance of the decision problem we must
determine whether there is a truth value (TRUE or FALSE) we
can assign to each of the variables (x1 through x4) such that the
entire expression is TRUE. In this instance, there is such an
assignment (x1 = TRUE, x2 = TRUE, x3=TRUE, x4=TRUE), so
the answer to this instance is YES. This is one of many
possible assignments, with for instance, any set of assignments
including x1 = TRUE being sufficient. If there were no such
assignment(s), the answer would be NO.
3-SAT is NP-complete and it is used as a starting point for
proving that other problems are also NP-hard. This is done by
polynomial-time reduction from 3-SAT to the other problem.
An example of a problem where this method has been used is
the Clique problem. 3-SAT can be further restricted to One-in-
three 3SAT, where we ask if exactly one of the literals in each
clause is true, rather than at least one. This restriction remains
NP-complete.

There is a simple randomized algorithm due to Schöning

(1999) that runs in time where n is the number of
clauses and succeeds with high probability to correctly decide
3-Sat. The exponential time hypothesis is that no algorithm can

solve 3-Sat in time .

 ng (1999) that runs in time where n is the number of
clauses and succeeds with high probability to correctly decide
3-Sat. The exponential time hypothesis is that no algorithm can

solve 3-Sat in time .

III. RECONFIGURATION USING SAT SOLVING
Since any network misconfiguration is technically resolvable
(if only by removing all inter-machine access), reconfiguration
decisions must be made in consideration of the cost of the
changes needed and of usability requirements. We have
developed two approaches based on advanced SAT solving
techniques that can automatically suggest optimal configuration
changes to address the security problems presented in a proof
graph. Our approaches allow a user to provide feedback to the
SAT solver so that constraints on usability, cost of deployment,
and potential damage due to successful attacks can all be
optimized in a unified framework.

A. Transforming proof graphs to Boolean formulas
We first extract the causality relationships represented in a
MulVAL proof graph and express them as a Boolean formula.
This is best explained through an example. In the dependency
proof graph of Figure 2, the AND node e1 means that the
remote exploit is successful, since all of its children nodes p2,
c1, c2 are enabled, and the result of the exploit is that the
attacker gains privilege p1.
This can be expressed by the following formula,
 p2 Λ c1 Λ c2=» p1
Or, equivalently,
 ¬ p2 v ¬c1 v ¬c2 v p1
We similarly convert the other exploit nodes to construct the
Following formulae:
e1 = ¬p2v ¬c1 v¬ c2 v p1
e2 = ¬c2 v ¬c3 v¬c5 v p1
e3 = ¬c4 v ¬c5 v p2
Let φ = e1 Λ e2 Λ e3, then φ is a Boolean formula in
conjunctive normal form (CNF) whose size is linear in the size
of the proof graph1. φ encodes all the causality relationships
between configuration data and potential attacker privileges
shown in the proof graph. For example, if all of c1, c2, c3, c4,
c5 are assigned the truth value T (as in the current
configuration), then p1, p2 must be assigned T to make a
satisfying assignment for φ. Therefore, if one wishes p1, p2 to
be false (meaning an attacker can gain neither of these
Privileges), at least some of c1, c2, c3, c4, c5 must be assigned
F, meaning some of the current configuration settings need to
be changed. Let ψ = φΛ¬p1Λ¬p2; then seeking a satisfying
assignment to ψ amounts to finding configuration settings that
can prevent an attacker from gaining privileges p1, p2.

Mekala Bhaskar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3672-3677

3674

Every variable representing a configuration setting will be
assigned T (meaning that the setting is “enabled”) or F
(“disabled”).
Since every configuration setting is T (“enabled”) when the
proof graph is constructed, removing or “disabling”
that setting will negate the associated variable. For example, if
c1 represents the existence of a software vulnerability on the
web server, the negation of that node means patching the
vulnerability; if c5 represents a reach ability relationship
between the Internet and the VPN server, disabling that node
means blocking that access. If we feed ψ to a SAT solver, we
can get a satisfying assignment by simply disabling all
the configuration nodes c1, c2, c3, c4, c5. This is certainly not
an optimal solution; we need a secure configuration that
maintains basic network usability. A careful observation of the
proof graph shows that by disabling c5 without altering c1, c2,
c3, c4, we can prevent all
the attack paths in the system, but we must consider the effects
of this decision. It is not necessarily the case that a minimal
number of system changes represent the optimal
Reconfiguration. Suppose again that c5 represents accessibility
of the VPN server from the Internet. Removing this access
would certainly block an attacker, but it would also prevent
legitimate users from remotely logging into the network via the
VPN server. This type of trade-off between security and
usability is often present in system configuration management.
In configuring an enterprise network, we want to compare not
only the potential cost in damage from a successful attack, but
also the potential losses arising from decreased network
usability. If the cost of completely securing the network against
attackers is much higher than the potential losses from attacks,
it could be a better solution simply to acknowledge and tolerate
the possibility that an attacker can obtain some minor
privileges on the enterprise system. In this example, we may
decide that an optimal solution would not force p2 to be false,
so we can redefine our goal to be ψ = φ Λ¬p1.We must now
re-examine the proof graph in light of this new ψ. Suppose that
c1 and c3 represent vulnerabilities present in system
applications. By patching these two vulnerabilities, we can
disable these two nodes and thus eliminate all attack paths that
could enable an attacker to gain privilege p1.This configuration
would negate p1 without violating φ, so it satisfies ψ.Though it
is relatively easy to examine and reconfigure this small
example, a reliable and automated approach is needed to
address security concerns in real-size enterprise networks.
We now introduce two applications of SAT solving to resolve
network misconfigurations by balancing costs and potential
damage.
B. MinCostSAT
MinCostSAT is a SAT problem which minimizes the cost of
the satisfying assignment [9]. Mathematically, given a Boolean
formula ψ with n variables x1, x2, . . . , xn, each with cost ci ≥0,
find a truth-value assignment X Є {0, 1}n such that Satisfies ψ
and minimizes
 n
C =∑ cixi
 I=1

Where xi Є {0, 1} and 1 ≤ i ≤ n.
MinCostSAT has been thoroughly studied by the SAT solving
community [2], [5], [9], [14]. Although the problem is NP-
hard, modern SAT solvers have been very successful in
practice, being able to handle Boolean formulas with millions
of variables and clauses in seconds. We use the MinCostChaff
solver [5] which is a MinCostSAT solver based on the zChaff
SAT solver [13].
The MinCostSAT problem minimizes the cost for variables that
are assigned T . This matches the semantics for privilege
variables, whose T assignment means an attacker can gain
some privilege and thereby cause some damage. But for
configuration variables, the cost would be incurred when it is
disabled, or assigned F. To model this correctly, we first
transform our formula to use the negation of a Boolean variable
to represent each configuration node. This way, when the
variable is assigned T , it means that the corresponding
configuration node is disabled, which will incur some cost.
With the expressiveness of Boolean formulas and the power of
a SAT solver, a system administrator can ask questions like
“what is the best way to reconfigure my system if I want to
guarantee that the file server will not be compromised?” This
can be done by forcing the Boolean variable x that corresponds
to the privilege ExecCode (fileServer, someUser) to be false
(i.e., conjoining � x to the original formula). He can also ask
questions like “Can I make the file server secure while
allowing the web server to be accessed from the Internet?” We
have implemented mechanisms that allow a system
administrator to specify those additional constraints for the
various queries he would like to conduct. Those constraints can
be straightforwardly specified in Datalog and automatically
transformed into additional clauses in the Boolean formula to
be solved by the MinCostSAT solver. This kind of constraint
can also become a part of the configuration policy. For
example, a user might decide that the web server must be
accessible from the Internet. If the variable representing this
Configuration setting is forced true in the Boolean formula;
MinCostSAT will never return a suggested reconfiguration that
requires this access to be removed. Similarly, potential attacker
privileges can be forced to be always false; for example, a user
might decide that an attacker should never access the data
historian, and so this access could be forced to be false,
meaning that MinCostSAT will never allow it to be true. This
effect could also be simulated by assigning unrealistically high
costs for those variables; however, forcing them to be true or
false will ensure that no reconfiguration suggestion will reverse
this decision.
C. Scalability
To test the scalability of our approach, we constructed
simulated enterprise networks with two different sizes
I: 100 host machines, evenly divided in 10 subnet
II: 250 host machines, evenly divided in 25 subnets
 We also tested using two different cost functions:
A: All clauses were assigned an equal cost. The effect of this
cost policy would simply be to minimize the number of
configuration changes made plus the number of compromised
machines.

Mekala Bhaskar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3672-3677

3675

B:Clauses represent in code-execution privileges on a machine
were assigned costs based on the machine’s position in the
network. The effect of this cost policy would be to have
increasingly high costs for penetrations deeper into the
network. The costs for blocking network access
to hosts or disabling network services were significant. All
other changes had equal, low cost.
The test was conducted on a Linux machine with Opteron
Dual-Core 2214 2.2 GHz CPU, with 16GB memory, and
running Gentoo Linux with kernel version 2.6.18-hardenedr6
Sz Cfn #variables #clauses time(sec)
I A 11,853 12,053 0.11
I B 11,853 12,053 0.21
II A 70,803 72,553 3.03
II B 70,803 72,553 6.49
The simulated networks on which we performed the above tests
were certainly not representative of realistic enterprise network
settings, but the performance indicates that modern SAT
solvers are likely to be powerful enough to handle the
configuration management problem we describe in this paper.
Also, a highly correlated network configuration may produce
nontrivial runtimes. A full-scope understanding of the
scalability of this approach will require extensive real-world
testing, currently planned for future work.

D. Iterative UNSAT Core Elimination
We now introduce the second SAT solving technique, in which
the concept of UNSAT core is leveraged for the identification
and resolution of conflicts in the network policies.
Definition 1. An unsatisfiable core is a subset of the original
CNF clauses that is unsatisfiable in itself [4].When a SAT
solver finds a set of clauses to be unsatisfiable,a byproduct of
this decision is the UNSAT core. Logically, given an
unsatisfiable Boolean formula ψ in CNF, the UNSAT core μ =
u1, u2, . . . , um is a subset of all the clauses in ψ (shorthanded
μ � ψ hereafter) such that ψ will remain unsatisfiable while μ
remains unchanged. We generate the UNSAT core using the
zChaff SAT solver’s zcore function [13].In this approach we
will not rely on cost assignments, but rather on the balance
between security and usability policies

Returning to the example from section II, let security policy δ =
-p1; then our security policy specifies that an attacker should
not be able to gain privilege p1. Let usability policies γ1 = c1 ^
c2 ^ c4 ^ c5 and γ2 = c2^ c3 ^ c5; then our usability policies
together specify that all current configuration settings are
necessary to maintain basic network usefulness. So ψ = φ ^ δ ^
γ1 ^ γ2.

Utilizing the UNSAT core in this way precludes the need to
assign costs to each network configuration setting beforehand,
as is required for the MinCostSAT solution. So long as security
and usability policies do not conflict, the user is not asked to
decide between any two policies or attempt to assign discrete
values to them. These decisions are only faced when an actual
conflict has arisen, so the human user makes only necessary
choices about system resource valuations.

Partial-order lattice: To further reduce the breadth of decisions
faced by a human user, we have implemented a partial-order
lattice to store the relative priorities between pairs of policies.
Each time the human user is presented with the causes of an
unclassifiablegy conflict and selects one or more of those
constraints to be relaxed, this decision is recorded in the
partial-order lattice to be used as a reference for deciding future
conflicts. We assume that the constraints. That the user allows
being relaxed has a lower overall priority than any clauses that
were not relaxed, and this ordering is recorded in the lattice. In
future decisions where two conflicting constraints appear for
which an ordering is already known, the constraint with higher
priority will not be offered to the user as a possibility for
relaxation. In this way, conflicts
are reduced to comparisons between configuration settings or
policy requirements for which relative priorities are not known.
Once known, these decisions need not be faced again

CONCLUSION
We have introduced a methodology where the system security
requirements can be converted to a Boolean formula and, using
SAT solving techniques, one can quickly correct
Misconfigurations that may lead to multi-step, multi-host
attacks in enterprise networks. This approach can account for
both security and usability requirements, through the adoption
of modern SAT solving techniques such as MinCostSAT and
UNSAT core elimination. We presented a unified framework in
which the competing requirements can be specified in a
Boolean formula and an optimal solution can be searched for
that provides a reasonable trade-off between the various
requirements for practical security administration. Preliminary
Experimental results on both realistic and synthesized
enterprise network settings indicate that the SAT solving
approach is effective and scalable.
Definition 2.
Let be Boolean variables. We define an literal to
be either or , for . We define a clause to be
the joining of some number of literals, by a , the "logical or",
surrounded by parenthesis. That is, a clause is

, with a literal, for . Finally,
let us define a formula as joining some number of clauses
with , the "logical and". That is, a formula is ,
where is a clause, for .
We can now define the boolean satisfiability problem: Given

a formula with boolean variables ,

decide if there exists a function ,

such that when one replaces by in , the resulting
boolean sentence is logically true. We note this

as , and say that is satisfiable.
This may seem like it applies only to a very restricted subset of
Boolean propositions; however, any Boolean proposition can
be reduced to one of these formulas. This is the conjunctive
normal form of a Boolean proposition. Thus, for any Boolean
proposition you have, there exist

Mekala Bhaskar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3672-3677

3676

REFERENCES
Davis, M.; Putnam, H. (1960). "A Computing Procedure for Quantification

Theory". Journal of the ACM 7 (3): 201. oi:10.1145/321033.321034.
Davis, M.; Loge Mann, G.; Loveland, D. (1962). "A machine program for

theorem-proving". Communications of the ACM 5 (7): 394–397.
doi:10.1145/368273.368557.

Cook, S. A. (1971). "The complexity of theorem-proving procedures".
Proceedings of the 3rd Annual ACM Symposium on Theory of
Computing: 151–158. doi:10.1145/800157.805047.

Michael R. Garey and David S. Johnson (1979). Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman. ISBN 0-
7167-1045-5. A9.1: LO1 – LO7, pp. 259 – 260.

Marques-Silva, J. P.; Sakallah, K. A. (1999). "GRASP: a search algorithm for
propositional satisfiability". IEEE Transactions on Computers 48 (5):
506. 10.1109/12.76943

[1] Stefano Ceri, George Gottlob, and Letizia Tanca. What you always
wanted to know about Datalog (and never dared to ask). IEEE Trans.

 Knowledge Data Eng., 1(1):146–166, 1989.
[2] Olivier Coudert. On solving covering problems. In 33rd Design Automation

Conference (DAC’96), pages 197–202, 1996.
[3] Rinku Dewri, Nayot Poolsappasit, Indrajit Ray, and Darrell Whitley.

Optimal security hardening using multi-objective optimization on attack
tree models of networks. In 14th ACM Conference on Computer and
Communications Security (CCS), 2007.

[4] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem.
In Armin Biere and Carla P. Gomes, editors, Proc. Theory Applications
Satisfiability Testing - SAT 2006, pages 252–265, 2006.

[5] Zhaohui Fu and Sharad Malik. Solving the Minimum-Cost
Satisfiabilityproblem using SAT based branch and bound search. In
Proc.International Conference on Computer-Aided Design (ICCAD),San
Jose, CA, USA, 2006.

[6] Kyle Ingols, Richard Lippmann, and Keith Piwowarski. Practical attack
graph generation for network defense. In 22nd Annual Computer

 Security Applications Conference (ACSAC), Miami Beach, Florida,
December 2006.

[7] Sushil Jajodia, Steven Noel, and Brian O’Berry. Topological analysis of
network attack vulnerability. In V. Kumar, J. Srivastava, and A.
Lazarevic, editors, Managing Cyber Threats: Issues, Approaches
andChallanges, chapter 5. Kluwer Academic Publisher, 2003.

[8] Somesh Jha, Oleg Sheyner, and Jeannette M.Wing. Two formal analyses of
attack graphs. In Proc.15th IEEE Computer Security Foundations
Workshop, pages 49–63, Nova Scotia, Canada, June 2002.

[9] Xiao Yu Li. Optimization Algorithms for the Minimum-Cost Satisfiability
Problem. PhD thesis, North Carolina State University, Raleigh, North
Carolina, 2004.

[10] Richard Lippmann, Kyle Ingols, Chris Scott, Keith Piwowarski, Kendra
Kratkiewicz, Mike Artz, and Robert Cunningham. Validating and

restoring defense in depth using attack graphs. In Military
Communications Conference (MILCOM), Washington, DC, U.S.A.,
October 2006.

[11] Richard Lippmann and Kyle W. Ingols. An annotated review of past
papers on attack graphs. Technical report, MIT Lincoln Laboratory,
March 2005.

[12] Richard P. Lippmann, Kyle W. Ingols, Chris Scott, Keith Piwowarski,
 Kendra Kratkiewicz, Michael Arts, and Robert Cunningham. Evaluating

and strengthening enterprise network security using attack graphs.
Technical Report ESC-TR-2005-064, MIT Lincoln Laboratory,
October2005.

[13] Yogesh S. Mahajan, Zhaohui Fu, and Sharad Malik. Zchaff2004: An
efficient SAT solver. In Lecture Notes in Computer Science SAT
2004Special Volume, pages 360–375. LNCS 3542, 2004.

[14] Vasco M. Manquinho and Jo ao P. Marques-Silva. Search pruning
techniques in SAT-based branch-and-bound algorithms for the
binatecovering problem. IEEE Trans. Computer-Aided Design, 21:505–
516,2002.

[15] Vaibhav Mehta, Constantinos Bartzis, Haifeng Zhu, Edmund Clarke, and
Jeannette Wing. Ranking attack graphs. In Proc. Recent Advances in
Intrusion Detection (RAID), September 2006.

[16] Sanjai Narain. Network configuration management via model finding.In
Proc. 19th conference on Large Installation System Administration
Conference (LISA), 2005.

[17] Sanjai Narain, Gary Levin, Vikram Kaul, and Sharad Malik. Declarative
infrastructure configuration synthesis and debugging. J. Network Systems
and Management, Special Issue on Security Configuration, 2008.

[18] Steven Noel, Sushi Jajodia, Brian O’Berry, and Michael Jacobs.
Efficient minimum-cost network hardening via exploit dependency
graphs.In 19th Annual Computer Security Applications Conference
(ACSAC), December 2003.

[19] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A scalable
approach to attack graph generation. In 13th ACM Conference
onComputer and Communications Security (CCS), pages 336–345, 2006.

[20] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. Mul-
VAL: A logic-based network security analyzer. In 14th USENIX Security
Symposium, 2005.

[21] Reginald Sawilla and Xinming Ou. Identifying critical attack assets in
dependency attack graphs. In 13th European Symposium on Research in
Computer Security (ESORICS), October 2008.

[22] Lingyu Wang, Steven Noel, and Sushil Jajodia. Minimum-cost network
hardening using attack graphs. Computer Communications, 29:3812–
3824, November 2006.

[23] Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Measuring network
security using attack graphs. In Third Workshop on Quality of
Protection(QoP), 2007.

Mekala Bhaskar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3672-3677

3677

